Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Given the partition $\{0,\frac{\pi}{2},\,\pi\}$, $\bar{x}_1=\frac{\pi}{4}$, and $\bar{x}_2=\frac{3\pi}{4}$, find the Riemann sum $R(P)$ for the integral $\int_0^{\pi}\cos(x)\,dx$.
  • Prove that if $f(x)$ is integrable between $0$ and $1$, then \begin{equation} \lim_{n\to\infty}\,\frac{1}{n}\sum_{k=1}^n\,f\left(\frac{k}{n}\right)=\int_0^1f(x)\,dx. \end{equation}
  • Prove that $\int_0^2f(x)\,dx=-1$ where \begin{equation} f(x)=\left\{\begin{array}{c}1,\,\mbox{if }0\leq x\lt 1\\ -2,\,\mbox{if }1\leq x\leq 2\end{array}\right. \end{equation} using Riemann sums.
  • Prove that $\int_0^1f(x)\,dx=0$ where \begin{equation} f(x)=\left\{\begin{array}{c}1,\,\mbox{if }x=\frac{1}{2}\\ 0,\,\mbox{if }x\neq\frac{1}{2}\end{array}\right. \end{equation} using Riemann sums.
  • Given the partition $\{0,\,\frac{\pi}{4},\,\frac{\pi}{2},\,\frac{3\pi}{4},\,\pi\}$, and points $\bar{x}_1=\frac{\pi}{8}$, $\bar{x}_2=\frac{3\pi}{8}$, $\bar{x}_3=\frac{5\pi}{8}$, and $\bar{x}_4=\frac{7\pi}{8}$; find $R(P)$ for $\int_0^{\pi}\sin(x)\,dx$.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter