Prove for a bounded function on $[a,b]$ that $\phi=\Phi$ if and only if for every $\epsilon\gt 0$ there exists a $\delta\gt 0$ such that for all partitions $P$ where $||P\,||\lt\delta$, then $U(P)-L(P)\lt\epsilon$.

Problem: 

Prove for a bounded function on $[a,b]$ that $\phi=\Phi$ if and only if for every $\epsilon\gt 0$ there exists a $\delta\gt 0$ such that for all partitions $P$ where $||P\,||\lt\delta$, then $U(P)-L(P)\lt\epsilon$.

Answer: 

It is true that $\phi=\Phi$ if and only if for every $\epsilon\gt 0$ there exists a $\delta\gt 0$ such that for all partitions $P$ where $||P\,||\lt\delta$, then $U(P)-L(P)\lt\epsilon$.