Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • If $f(x)$ is continuous and $m(x)$ is the minimum value of $f(x)$ in the closed interval $[x,a]$, then prove that \[ \lim_{x\to a^-}\,m(x)=f(a). \]
  • If $f(x)$ is continuous and $M(x)$ is the maximum value of $f(x)$ in the closed interval $[a,x]$, then prove that \[ \lim_{x\to a^+}\,M(x)=f(a). \]
  • If $f(x)$ is continuous and $m(x)$ is the minimum value of $f(x)$ in the closed interval $[a,x]$, then prove that \[ \lim_{x\to a^+}\,m(x)=f(a). \]
  • Prove that if $f(x)$ is continuous and $K$ is a constant, then $f(x)+K$ is a continuous function.
  • Prove that if $f(x)$ is continuous on $[a,b]$ and $f(a)\lt 0\lt f(b)$ or $f(b)\lt 0\lt f(a)$, then there exists a number $K$ between $a$ and $b$ such that $f(K)=0$.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter