Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Prove that \[ \lim_{h\to 0}\,\sqrt{x+h}+\sqrt{x}=2\sqrt{x}. \]
  • Prove that if \[\lim_{h\to 0}\,g(h)=0\] and $g(h)\neq 0$ for some interval $(-\bar{\delta},0)\cup (0,\bar{\delta})$ where $\bar{\delta}\gt 0$ then \[ \lim_{h\to 0}\,g(h)=\lim_{g(h)\to 0}\,g(h). \]
  • Prove that if \[\lim_{h\to 0}\,f(a+h)=L, \] then \[\lim_{x\to a}\,f(x)=L.\]
  • Prove that if \[\lim_{x\to a}\,f(x)=L,\] then \[\lim_{h\to 0}\,f(a+h)=L.\]
  • Prove that \[\lim_{x\to a}\,f(x)=L\] if and only if \[\quad\lim_{h\to 0}\,f(a+h)=L.\]

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • next ›
  • last »
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter