Skip to main content
Menu
Lessons
Problems
Calculator
Search
Blog
Purchase
Login
Function Limits IV: The Gory Details Of One-Sided Limits
Primary tabs
View
(active tab)
Problems
Lesson Summary:
We provide a mathematically rigorous definition of one-sided limits and prove a very important relationship between two-sided and one-sided limits.
Lesson Inputs:
Function Limits III: The Gory Details
GAIN AN ADVANTAGE
Fully worked out solutions
Easy to digest lessons
Cheat sheets
PDF: How to Make an A+ in Your First Calculus Course
CLICK HERE FOR INSTANT ACCESS
Lesson Specific Problems
Prove that \[ \lim_{x\to a^-}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^-}\,f(x)=L \] and \[ \lim_{x\to a^-}\,g(x)=K. \]
Prove that \[ \lim_{x\to a^+}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^+}\,f(x)=L \] and \[ \lim_{x\to a^+}\,g(x)=K. \]
Prove that if \begin{equation}\lim_{x\to a-}\,f(x)\neq \lim_{x\to a+}\,f(x)\end{equation} then \begin{equation}\lim_{x\to a\,}\,f(x)\end{equation} does not exist.
Determine \begin{equation}\lim_{x\to 1}\,f(x)\quad\mbox{where}\quad f(x)=\left\{\begin{array}{lr}x^2,&x\leq 1\\5x,&x\gt 1\end{array}\right.\end{equation}
Prove \begin{equation}\lim_{x\to a\,}\,f(x)=L\end{equation} if and only if \begin{equation}\lim_{x\to a-}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a+}\,f(x)=L.\end{equation}
Pages
1
2
next ›
last »