Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)
  • Prove that \[ \lim_{x\to a^-}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^-}\,f(x)=L \] and \[ \lim_{x\to a^-}\,g(x)=K. \]
  • Prove that \[ \lim_{x\to a^+}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^+}\,f(x)=L \] and \[ \lim_{x\to a^+}\,g(x)=K. \]
  • Prove that if \begin{equation}\lim_{x\to a-}\,f(x)\neq \lim_{x\to a+}\,f(x)\end{equation} then \begin{equation}\lim_{x\to a\,}\,f(x)\end{equation} does not exist.
  • Determine \begin{equation}\lim_{x\to 1}\,f(x)\quad\mbox{where}\quad f(x)=\left\{\begin{array}{lr}x^2,&x\leq 1\\5x,&x\gt 1\end{array}\right.\end{equation}
  • Prove \begin{equation}\lim_{x\to a\,}\,f(x)=L\end{equation} if and only if \begin{equation}\lim_{x\to a-}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a+}\,f(x)=L.\end{equation}
  • Prove that if \begin{equation}\lim_{x\to a-}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a+}\,f(x)=L\end{equation} then \begin{equation}\lim_{x\to a\,}\,f(x)=L.\end{equation}
  • Prove that if \begin{equation}\lim_{x\to a\,}\,f(x)=L\end{equation} then \begin{equation}\lim_{x\to a-}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a+}\,f(x)=L.\end{equation}
  • Determine \begin{equation}\lim_{x\to 2}\,f(x)\quad\mbox{where}\quad f(x)=\left\{\begin{array}{lr}x^2,&x\leq 1\\5x,&x\gt 1\end{array}\right.\end{equation}
  • Determine \begin{equation}\lim_{x\to 3}\,f(x)\end{equation} where \begin{equation}f(x)=\left\{\begin{array}{lr}x^2,&x\lt3\\10,&x=3\\2x+3,&x\gt 3\end{array}\right.\end{equation}

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Prove that \[ \lim_{x\to a^-}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^-}\,f(x)=L \] and \[ \lim_{x\to a^-}\,g(x)=K. \]
  • Prove that \[ \lim_{x\to a^+}\,[f(x)+g(x)]=L+K \] if \[ \lim_{x\to a^+}\,f(x)=L \] and \[ \lim_{x\to a^+}\,g(x)=K. \]
  • Prove that if \begin{equation}\lim_{x\to a-}\,f(x)\neq \lim_{x\to a+}\,f(x)\end{equation} then \begin{equation}\lim_{x\to a\,}\,f(x)\end{equation} does not exist.
  • Determine \begin{equation}\lim_{x\to 1}\,f(x)\quad\mbox{where}\quad f(x)=\left\{\begin{array}{lr}x^2,&x\leq 1\\5x,&x\gt 1\end{array}\right.\end{equation}
  • Prove \begin{equation}\lim_{x\to a\,}\,f(x)=L\end{equation} if and only if \begin{equation}\lim_{x\to a-}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to a+}\,f(x)=L.\end{equation}

Pages

  • 1
  • 2
  • next ›
  • last »
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter