Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)
  • Prove that if \begin{eqnarray} a_1&\leq& b_1\leq c_1,\\ a_2&\leq& b_2\leq c_2,\\ &\vdots&\\ a_N&\leq& b_N\leq c_N, \end{eqnarray} then \[ \sum_{i=1}^Na_i\leq \sum_{i=1}^Nb_i\leq \sum_{i=1}^Nc_i. \]
  • Prove that if $a_1\leq b_1\leq c_1$ and $a_2\leq b_2\leq c_2$, then $a_1+a_2\leq b_1+b_2\leq c_1+c_2$.
  • Prove that if $a_1\leq b_1$ and $a_2\leq b_2$, then $a_1+a_2\leq b_1+b_2$.
  • Prove that if $a=bc$, $b\gt 0$ and $c\gt 1$, then $a\gt b$.
  • Prove that if $a\gt 0$ and $b\gt 0$, then $a+b\gt a$ and $a+b\gt b$.
  • Prove that if $0\lt a\lt b$, then $a^2\lt \frac{1}{3}\left(a^2+ab+b^2\right)\lt b^2$.
  • Prove that if $0\lt x_1\lt x_2$, then $x^2_1\lt x^2_2$.
  • Solve for $x$ in $5-3x\leq 8+5x$.

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Prove that if \begin{eqnarray} a_1&\leq& b_1\leq c_1,\\ a_2&\leq& b_2\leq c_2,\\ &\vdots&\\ a_N&\leq& b_N\leq c_N, \end{eqnarray} then \[ \sum_{i=1}^Na_i\leq \sum_{i=1}^Nb_i\leq \sum_{i=1}^Nc_i. \]
  • Prove that if $a_1\leq b_1\leq c_1$ and $a_2\leq b_2\leq c_2$, then $a_1+a_2\leq b_1+b_2\leq c_1+c_2$.
  • Prove that if $a_1\leq b_1$ and $a_2\leq b_2$, then $a_1+a_2\leq b_1+b_2$.
  • Prove that if $a=bc$, $b\gt 0$ and $c\gt 1$, then $a\gt b$.
  • Prove that if $a\gt 0$ and $b\gt 0$, then $a+b\gt a$ and $a+b\gt b$.

Pages

  • 1
  • 2
  • next ›
  • last »
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter