Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)
  • Prove that the limit \begin{equation} \lim_{x\to\infty}\,ax^n \end{equation} does not exist for all $n\geq 1$.
  • Prove that the limit \begin{equation} \lim_{x\to\infty}\,x^n \end{equation} does not exist for all $n\geq 1$..
  • Prove that the limit \begin{equation} \lim_{x\to\infty}\,x \end{equation} does not exist.
  • Prove that \begin{equation} \lim_{x\to\infty}\,\frac{1}{x^n}=0. \end{equation}
  • Prove that \begin{equation} \lim_{x\to\infty}\,\frac{1}{x^2}=0. \end{equation}
  • Prove that if $\lim_{x\to\infty}\,f(x)=L$ and $\lim_{x\to\infty}\,g(x)=K$ then \begin{equation} \lim_{x\to\infty}\,f(x)+g(x)=L+K. \end{equation}
  • Prove that \begin{equation} \lim_{x\to\infty}\,C=C \end{equation} where $C$ is a constant.
  • Assume that \begin{equation} \lim_{x\to\infty}\,f(x)=L\quad\mbox{and}\quad\lim_{x\to\infty}\,g(x)=K \end{equation} and that $K\neq 0$. Prove that \begin{equation}\lim_{x\to\infty}\,\frac{f(x)}{g(x)}=\frac{L}{K}.\end{equation}
  • Prove that if \begin{equation} \lim_{x\to\infty}\,f(x)=L \end{equation} and \begin{equation} \lim_{x\to\infty}\,g(x)=K \end{equation} then \begin{equation} \lim_{x\to\infty}\,f(x)\,g(x)=LK. \end{equation}
  • Prove that if \begin{equation} \lim_{x\to\infty}\,f(x)=L \end{equation} and $L\neq 0$ then \begin{equation} \lim_{x\to\infty}\,\frac{1}{f(x)}=\frac{1}{L}. \end{equation}
  • Prove that \begin{equation}\lim_{x\to \infty}\,\frac{1}{x}=0.\end{equation}

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Prove that the limit \begin{equation} \lim_{x\to\infty}\,ax^n \end{equation} does not exist for all $n\geq 1$.
  • Prove that the limit \begin{equation} \lim_{x\to\infty}\,x^n \end{equation} does not exist for all $n\geq 1$..
  • Prove that the limit \begin{equation} \lim_{x\to\infty}\,x \end{equation} does not exist.
  • Prove that \begin{equation} \lim_{x\to\infty}\,\frac{1}{x^n}=0. \end{equation}
  • Prove that \begin{equation} \lim_{x\to\infty}\,\frac{1}{x^2}=0. \end{equation}

Pages

  • 1
  • 2
  • 3
  • next ›
  • last »
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter