Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)
  • Show that all $x$ satisfying $0\lt |x-a|\lt\delta$ is equivalent to the union $(a-\delta,a)\cup (a,a+\delta)$ where $a$ is any real number and $\delta\gt 0$.
  • Prove that for any real numbers $a$ and $\delta\gt 0$ that the interval $(a-\delta,a+\delta)$ contains the closed interval $[a-\delta/2,a+\delta/2]$.

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Show that all $x$ satisfying $0\lt |x-a|\lt\delta$ is equivalent to the union $(a-\delta,a)\cup (a,a+\delta)$ where $a$ is any real number and $\delta\gt 0$.
  • Prove that for any real numbers $a$ and $\delta\gt 0$ that the interval $(a-\delta,a+\delta)$ contains the closed interval $[a-\delta/2,a+\delta/2]$.
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter