Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)
  • Prove that \[\lim_{h\to 0}\,\frac{h^n}{h}=0\]where $n$ is a positive integer greater than $1$.
  • Determine \[ \lim_{x\to -2}\frac{x^2-4}{x^2-4}. \]
  • Prove that \[\lim_{h\to 0}\,\frac{h^3}{h}=0.\]
  • Show that \[\lim_{h\to 0}\,\frac{|h|}{h}\] does not exist.
  • Prove that \[\lim_{h\to 0}\,\frac{h^2}{h}=0.\]
  • Prove that \[\lim_{h\to 0}\,\frac{h}{h}=1.\]
  • Prove that \[\lim_{h\to 0}\,\frac{0}{h}=0.\]

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Prove that \[\lim_{h\to 0}\,\frac{h^n}{h}=0\]where $n$ is a positive integer greater than $1$.
  • Determine \[ \lim_{x\to -2}\frac{x^2-4}{x^2-4}. \]
  • Prove that \[\lim_{h\to 0}\,\frac{h^3}{h}=0.\]
  • Show that \[\lim_{h\to 0}\,\frac{|h|}{h}\] does not exist.
  • Prove that \[\lim_{h\to 0}\,\frac{h^2}{h}=0.\]

Pages

  • 1
  • 2
  • next ›
  • last »
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter