Skip to main content
CalculusSolution.com Home
Menu
  • Lessons
  • Problems
  • Calculator
  • Search
  • Blog
  • Purchase
  • Login

Problems

Primary tabs

  • View
  • Problems(active tab)
  • Determine $(g\circ f)(x)$ when $f(x)=-2\,x^2-4$ and $g(x)=-x$.
  • Determine $(f\circ g)(x)$ if $f(x)=(x-1)/(x+1)$ and $g(x)=x^2$.
  • Determine $(f\circ g)(x)$ if $f(x)=2x$ and $g(x)=3x$.
  • Suppose that $f(x)=x+2$ and $g(x)=x^2$. Find $f\circ g$ and $g\circ f$.
  • Determine $(f\circ g)(x)$ when $f(x)=2\,x^2+4\,x-4$ and $g(x)=-5\,x^2+2\,x+6$.
  • Determine $(f\circ g)(x)$ when $f(x)=x^2-6\,x-4$ and $g(x)=-3\,x^2-2\,x-7$.
  • Determine $(f\circ g)(x)$ when $f(x)=-2\,x^2-4$ and $g(x)=-x$.
  • Determine $(f\circ g)(x)$ when $f(x)=-x^2-8\,x-6$ and $g(x)=9\,x^2+4\,x+3$.
  • Determine $(f\circ g)(x)$ when $f(x)=5$ and $g(x)=x^2+8\,x+3$.
  • Determine $(f\circ g)(x)$ when $f(x)=-x-1$ and $g(x)=-3\,x^2$.
  • Determine $(f\circ g)(x)$ when $f(x)=2\,x^2+4\,x-1$ and $g(x)=3\,x^2+2\,x-3$.
  • Determine $(f\circ g)(x)$ when $f(x)=-x^2-5$ and $g(x)=x+5$.
  • Determine $(f\circ g)(x)$ when $f(x)=-2\,x^2+x+2$ and $g(x)=2\,x^2+2\,x-2$.
  • Determine $(f\circ g)(x)$ when $f(x)=2\,x-x^2$ and $g(x)=x^2-x+2$.
  • Determine $(f\circ g)(x)$ when $f(x)=2$ and $g(x)=-2\,x-2$.
  • Determine $(f\circ g)(x)$ when $f(x)=2\,x^2-1$ and $g(x)=2\,x^2+2$.
  • Determine $(f\circ g)(x)$ when $f(x)=2\,x^2+x-1$ and $g(x)=0$.
  • Determine $(f\circ g)(x)$ when $f(x)=2\,x^2+2\,x-2$ and $g(x)=-2\,x^2+x-1$.

GAIN AN ADVANTAGE

  • Fully worked out solutions
  • Easy to digest lessons
  • Cheat sheets
  • PDF: How to Make an A+ in Your First Calculus Course

CLICK HERE FOR INSTANT ACCESS

Lesson Specific Problems

  • Determine $(g\circ f)(x)$ when $f(x)=-2\,x^2-4$ and $g(x)=-x$.
  • Determine $(f\circ g)(x)$ when $f(x)=2\,x^2+4\,x-4$ and $g(x)=-5\,x^2+2\,x+6$.
  • Determine $(f\circ g)(x)$ when $f(x)=x^2-6\,x-4$ and $g(x)=-3\,x^2-2\,x-7$.
  • Determine $(f\circ g)(x)$ when $f(x)=-2\,x^2-4$ and $g(x)=-x$.
  • Determine $(f\circ g)(x)$ when $f(x)=-x^2-8\,x-6$ and $g(x)=9\,x^2+4\,x+3$.

Pages

  • 1
  • 2
  • 3
  • 4
  • next ›
  • last »
  • Copyright © 2013-2020 Six Sycamores, LLC All Rights Reserved
  • Login
  • Terms
  • Privacy
  • Contact
  • twitter